Integer-valued Polynomials on Algebras

نویسنده

  • Sophie Frisch
چکیده

Let D be a domain with quotient field K and A a D-algebra. A polynomial with coefficients in K that maps every element of A to an element of A is called integer-valued on A. For commutative A we also consider integer-valued polynomials in several variables. For an arbitrary domain D and I an arbitrary ideal of D we show I -adic continuity of integer-valued polynomials on A. For Noetherian one-dimensional D, we determine spectrum and Krull dimension of the ring IntD(A) of integer-valued polynomials on A. We do the same for the ring of polynomials with coefficients in Mn(K), the K -algebra of n× n matrices, that map every matrix in Mn(D) to a matrix in Mn(D). 2000 MSC: Primary 13F20; Secondary 16S50, 13B25, 13J10, 11C08, 11C20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integer-valued Polynomials on Algebras a Survey

We compare several different concepts of integer-valued polynomials on algebras and collect the few results and many open questions to be found in the literature. (2000 Math. Subj. Classification: Primary 13F20; Secondary 16S50, 13B25, 13J10, 11C08, 11C20)

متن کامل

Integer-Valued Polynomials: Looking for Regular Bases (a Survey)

This paper reviews recent results about the additive structure of algebras of integer-valued polynomials, and particularly, the question of the existence and the construction of regular bases. Doing this, we will be led to consider questions of combinatorial, arithmetical, algebraic, ultrametric or dynamical nature. 2010 MSC. Primary 13F20; Secondary 11S05, 11R21, 11B65

متن کامل

On the character space of vector-valued Lipschitz algebras

We show that the character space of the vector-valued Lipschitz algebra $Lip^{alpha}(X, E)$ of order $alpha$ is homeomorphic to the cartesian product $Xtimes M_E$ in the product topology, where $X$ is a compact metric space and $E$ is a unital commutative Banach algebra. We also characterize the form of each character on $Lip^{alpha}(X, E)$. By appealing to the injective tensor product, we the...

متن کامل

Polynomial Separation of Points in Algebras

We show that for a wide variety of domains, including all Dedekind rings with finite residue fields, it is possible to separate any two algebraic elements a, b of an algebra over the quotient field by integer-valued polynomials (i.e. to map a and b to 0 and 1, respectively, with a polynomial in K[x] that maps every element of D to an element of D), provided only that the minimal polynomials of ...

متن کامل

Projective P - Orderings and Homogeneous Integer - Valued Polynomials

Bhargava defined p-orderings of subsets of Dedekind domains and with them studied polynomials which take integer values on those subsets. In analogy with this construction for subsets of Z(p) and p-local integer-valued polynomials in one variable, we define projective p-orderings of subsets of Z(p). With such a projective p-ordering for Z(p) we construct a basis for the module of homogeneous, p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012